

Aviation-class Synergistically Cooled Electric-motors with iNtegrated Drives (ASCEND)

Annual Program Review Meeting June 29, 2022 – Cleveland

Developing tomorrow's electric aircraft

REEACH / ASCEND / CABLES Annual Program Review Meeting June 28-30, 2022

Brief ASCEND Project Overview

Team member	Location	Role in project
Colin Tschida	Ithaca, NY	Principal Investigator
Subhashree Rajagopal	Seattle, WA	Senior Electrical Engineer
Patrick Biel	Albany, NY	Director of Power Electronics
Muhammad Shafiq	Albany, NY	CFD Engineer

Context/history of the project

Wright is dedicated to low emissions aviation
We are designing to retrofit in existing narrow-body aircraft (~100 passenger)
Wright is growing!

Solution Approach

High frequency stator with Halbach rotor

High frequency, soft-switching drive

Shared thermal management

Designed to meet mission requirements

Application Metric	Status	
505 kW	505 kW	
12.05 kW/kg	12.1 kW/kg	
5,000 rpm	5,000 rpm	

Progress

- Design optimization for mission
- Low power testing of inverter prototype
 - Selected vendors for component fabrication
 - Derisk technology with related testing

Risk Update

Phase 1 reduces project risk

#	Risk	
1	Stator Cooling	
2	Component sourcing	
3	Motor Manufacturing	
4	partial discharge	
5	Inverter Switching	
6	Thermal Management	

	Almost Certain				6	
L i k i h	Likely			5	2	
	Moderate			4	1	3
o o d	Unlikely			4	1	3
	Rare				2	
		Insignificant	Minor	Moderate	Major	Catastrophic
	Consequence					

Now

Start of project

Challenges and Learnings

Challenges remaining

- Soft-Switching timing
- Analog Circuit design
- Validation of design assumptions of TMS

What we have learned

Designing for our application permits us to increase system performance

Technology-to-Market Approach and Update

First Application:

- Stepwise retrofit of the BAE-146
- Other applications under consideration

Long Term Market:

- All-electric single aisle aircraft
- 50% of the commercial market

Barriers to Market Entry:

Gaps in regulations/standards and certification

Needs and Potential Partnerships:

Power dense energy storage

Q & A

https://arpa-e.energy.gov

Motor + Power Electronics + TMS Performance

System	Requirement	Application Metric	Status
Integrated Powertrain	System Capacity	505 kW	505 kW
	Power density at takeoff for the complete powertrain (motor, drive, and TMS)	12.05 kW/kg	12.1 kW/kg
	Cost for complete powertrain	350 \$/kW	<350 \$/kW
Motor Drive	Cruise average efficiency	99.3%	99.3%
	Power density (including TMS) at takeoff	42.0 kW/kg	52 kW/kg
Electric Motor	Cruise average efficiency	94.3%	> 95%
	Takeoff rotational speed of the motor	5000 rpm	5,000 rpm
	Power density (including TMS) at takeoff	14.3 kW/kg	14.4 kW/kg

